3.4.7 * Support more than 255 classes to predict (if n > 255, raster datatype will be set to uint16) 3.4.6 * Minor fixes and remove SLOO training due to error in code 3.4.5 * Fix bug when predicting a raster with a previous model and no vector loaded in Qgis. 3.4.4 * Remove install of sklearn with python pip (causes bugs). * Force n_jobs=1 (1 cpu) while learning. 3.4.2 * Fix bug when trying to install sklearn at launch. 3.4.1 * Automatically install sklearn (if pip is installed) * Precise in the confusion matrix that lines are references and columns prediction. 3.4 * Add welcome message if first installation, with, I hope, good tips for new users 3.3.1 * Store settings with QSettings (keep settings when updating plugin now!) * Correct bug when no nodata value was defined in raster source (default value now : -9999) 3.3 * Correct error when chaining with dzetsaka in Processing Toolbox 3.2 * Add Domain Adaptation in Processing Toolbox (thanks to POT library) * In the settings box, you can choose to have experimental function in the Processing Toolbox * Minor fixes 3.1.1 * Select providers type (Standard or Experimental), to use latests code in the processing toolbox (but no guarantee at all). 3.1 * Replace scipy with numpy when possible * Correct bug in predicting an already trained model * Specify a way on Windows to install scikit-learn and use SVM/RF/KNN 3.0.3 * Add confirmation box if two different projections * Correct bug when loading model 3.0.2 * Add progress bar for GUI 3.0.1 * Minor fixes (with icons) 3.0.0 * First version of dzetsaka for Qgis 3. * TODO : Progress bar when using UI. * TODO : Historical Map algorithms
yes
lennepkade
2019-06-10T08:26:38.609963+00:00
3.0.0
3.99.0
None
no
Plugin Tags